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Abstract

. In general, a signal cannot be reconstructed from its sign, i.e., from its

hardlimited version. However, by deliberately adding noise to samples of the signal

prior to hardlimiting, it is shown that the signal can be estimated consistently

from its hardlimited noisy samples as the sampling rate tends to infinity. In fact,

such estimates are shown to converge with probability one to the signal and also,

to be asymptotically normal. The estimates, which are generally nonlinear, can be

made linear by a proper choice of the noise distribution. These rather unexpected

results hold for all bounded and uniformly continuous signals. In addition to the

hardlimiter, such results are also established for certain monotonic and non-

monotonic nonlinearities.
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I. INTRODUCTION

In this paper we study the problem of reconstructing a real signal s(t)

defined on an interval I, from certain nonlinear transformations of its samples

{s(k/W)}k that are deliberately corrupted by additive noise {Xklk, i.e., from

{f[s(k/W) + Xk]}k where f(x) is a memoryless nonlinearity such as a hardlimiter.

Under appropriate conditions it is shown that a properly chosen, generally non-

linear, estimate W(t) of s(t) converges in quadratic mean, as well as with proba-

bility one, to s(t) as the sampling rate W tends to infinity. It should be pointed

out that the memoryless nonlinearity f(x) need not be one-to-one so that the signal

s(t) cannot, in general, be recovered from {f[s(k/W))lk as W tends to infinity, in

the absence of the additive noise {Xkl. It is the deliberate addition of the noise

that makes the reconstruction of the signal feasible.

This work is motivated by the observation that an arbitrary continuous func-

tion s(t), -.<t<- cannot, in general, be reconstructed from its sign, sgn[s(t)],

-M<t<-. This situation remains true even when the function s(t) is analytic, e.g.,
W

bandlimited. We recall that for a bandlimited function s(t) = -W e tAS(x)dx,

S(A) E LI[-W,W], we have by Titchmarsh's theorem [1] the conditionally convergent

product s(t) = s(O) 4=0l(l - t/zn) where s(O) 0 0 and {znl is the set of all (real

and complex) zeros of s(z), z = t+iu, in the complex plane. Thus s(t) cannot be

determined from its zero crossings since the complex zeros are not observable.

Duffin and Schaeffer [2] have shown that the function r(z) - C cosWz-s(z),

C > suptls(t)I, has real simple zeros (tn) only and r(t) - r(O) nol(lt/tn) so

that
I.

s(t) = C coswt - [C-s(O)n H - t
n=l'n'

Hence, s(t) can be determined by the zero crossings of C cosWt-s(t). This result

has found no practical use in communication systems since the identification of the
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zero crossing points {tnl of C cosWt-s(t) as well as the formation of the infinite

product nn(l-t/tn) are not easily implemented. More significantly, no digital re-

construction scheme of s(t), based on samples of sgn[C cosWt-s(t)], is available.

It will be shown in Section II that for all bounded uniformly continuous

signals s(t) (not necessarily bandlimited) we have estimates Sw(t) of s(t), based

on the binary data {sgn[s(k/W)+Xk)} k, which converge with probability one to s(t),

as the sampling rate W tends to infinity. It is the deliberate corruption of the

samples of the signal by the noise, before hardlimiting, that makes it possible to

reconstruct s(t) from the output of the hardlimiter. Moreover, by properly choos-

ing the distribution of the noise, we can make the estimate to be linear.

The general problem can be modelled as a transmitter/receiver (with no

channel noise) with a structure depicted in Figure 1. A continuous-time signal s(t)

on an interval I is sampled at equally-spaced points {k/W}k in I where W is the

sampling rate. The samples {s(k/W)}k are then deliberately corrupted by additive

noise {Xklk which is a sequence of independent identically distributed random vari-

ables whose distribution is specified below. The noisy samples {YsWk - s(k/W)+Xk}k

are passed through a given memoryless nonlinearity f(x) which need not be monotonic,

a typical example being a hardlimiter. Its output sequence {ZWk A f(Yw,k)lk is

transmitted. The receiver structure is generally nonlinear and consists of a

linear system hW = {hW(t,k)}k cascaded with a memoryless nonlinearity g(x). The

output mw(t) of the linear system hW is given by

iw(t) Z W,k hw(t,k), tEI . ()

k

The choice of the linear system does not depend on the signal s(t) nor on the dis-

| tribution of the noise nor on the nonlinearity f(x) in the transmitter; it only

depends on the time interval I. On the other hand, the nonlinearity g(x) in the

receiver is determined by the distribution of the noise and the nonlinearity f(x)

in the transmitter. The estimate iw(t) of s(t) is defined by

sw(t) -g[m~wt) t C 1 (2)

2
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The main results of the paper are the mean-square consistency of the esti-

mate (2) (Theorems 2.1 and 3.1), its strong consistency (Theorems 2.3 and 3.3),

and a central limit theorem for the error Sw(t)-s(t) (Theorems 2.4 and 3.4). Of

possible independent interest are the convergence properties (Theorem 4.0-4.1) of

iw(t) as an estimate of the mean function m(t) - E[f(s(t)+X)] of the output of the

nonlinearity f.

The feasibility of the reconstruction of the signal was suggested by the

results of a recent paper [3] by the authors; according to which s(t) can be

determined from the mean function m(t) = E[f(s(t)+X)]. This suggests that an esti-

mate of s(t) can be obtained from an estimate of m(t) via (2). The form of the

estimate (1) for m(t), i.e., the linear system in the receiver, was motivated by

the work of Dorogovcev [4] on the nonparametric estimation of regression functions.

Throughout the manuscript we shall assume that s(t) belongs to the follow-

ing class of signals.

Assumption A. Let b be a fixed known positive constant, and s(t) be any

uniformly continuous function on the interval I (finite or infinite) satisfying

Is(t)I :_ b for all t $F I.

As a consequence, the receiver structure and the convergence results of

this paper are nonparametric in the signal. Incidentally, additional assumptions

on the signal, such as differentiability or bandlimitness, do not provide an

improvement in the rate of convergence.

The organization of the paper is as follows: Due to its apparent practical

significance, the case of a hardlimiter, f(x) = sgn x, is presented and discussed

separately in Section II. The general case is considered in Section III. In

Section IV the convergence properties of the estimate iro(t) are obtained. The

derivations of the theorems stated in Sections II and III are given in Section V.

Throughout this paper, the expressions o(.) and o(' as W * a are uniform

in t over closed and bounded intervals in the interior of the interval I. This

property will not be repeated in the statements of the theorems.
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II. THE HARDLIMITER CASE

In this section we consider the hardlimiter case, f(x) = sgn x, for which

the transmitted data is binary. We make the following assumptions.

() The signal s(t) satisfies assumption A and the interval I is either

(0,1] or [0,.) (other choices are discussed in Section III).

(ii) The distribution of the noise X is either normal with mean zero,

known variance a2 and density *(x;a), or uniform over [-b,b]. (Other appropriate

distributions, such as Laplacian, could also be used.)

Define the function P(s) by

P(s) = Etsgn(s+X)), -- <s< .

When X is normal, u(s) is given by

2,.fS/a u/

UN(S) = u , 2/2 < S<cc (3a)
0

and when X is uniform over [-b,b], we have

- , s < -b

Pu(S) s/b , -b - s-! b (3b)

I , b<s

Note that UN(S) and U(S) are strictly monotonic over (-m,-) and [-b,b], respectively.

We now specify the structure of the receiver. When X is normal, the non-

lineartiy g(x) is chosen as

SN(W, x) I ux-N(c)

gN(x) , mc b+e, c >0. (4a)

o , JXJ U ,N(C)

When X is uniform over [-b,b], the nonlinearity g(x) is chosen as

bx I Xlf-- I

gU(x) - 1 1 (4b)

4
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The choice of the linear system hw = {hg(tk)}k depends only on the interval I.

When I = [0,m), hw is defined by

k!hw(tk -- k e W  , k = 0,1,.... ,t > 0, W > 0 , (5)

and when I = [0,1], by

hw(tk) = (W) tk(l-t)Wk , k = O,1,... ,W, 0 r t < , (6)

W: positive integer.

A more general class of linear systems is considered in Section III. With

;w(t) X sgn[s(-k)+ Xk]hW(t,k), t E , (7)

representing the output of either linear system (5) or (6), the estimate Sw(t) of

s(t) is given by

iw(t) = gN[k(t)], t F- I (8a)

when X is normal, and by

SW(t) = b mw(t), t E I (8b)

when X is uniform over [-b,b]. (Since I;W(t)l-<l, only the linear portion of gU(x)

is used.) Thus in the latter case, the estimate Sw(t) is linear in the data

{sgn[s(k/W)+XkJ}k.

Our first result shows the mean-square consistency of the estimate Sw(t)

and provides bounds on the rate of convergence; it is states in terms of the

mudulus of continuity of s(t) defined by

W(s;6) = sup{t,t-Ei: It-tI 6} s(t) - s(t), 6 > 0

I|, Theorem 2.1. (a) If I = [0,1) and the linear system is determined by (6)

then for every 0 < t < 1, the estimates sw(t), given by (8a) and (8b), converge in

• the mean-square sense to s(t), as W ,and
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2 21 + o(l)
E[sw(t)-s(t)] I Kl wS(s; !t(l-t)iW) + K2 2gWt(t)a)

(b) if I = [0,.) and the linear system is determined by (5) then for

every t > 0, the estimates Sw(t), given by (8a) and (8b), converge in the mean-

square sense to s(t), as W -P, and

E t_ )2<K 2 -2Wt
E[Sw(t)-(t)] K1  (s; ,t/_W) + K2 e Io(2Wt) , (9b)

where Io(x) is the modified Bessel function of the Ist kind of order zero and

exp(-2Wt)lo(2Wt) = [1 + o(l)]/ f-: - .

The constants Kl, K2 are the same for both parts (a) and (b) and are given

as follows for the estimates (8a) and (8b).

8 __+__b/_)

For (8a): KI - K 2 K 2 I-+(b )
2 2 40 2(b+ ; )

For (8b): K1 = 4, K2 =b

In the bounds (9) on the mean-square error, the first term is due to the

bias of the estimate whereas the second term is due to its variance; the bias

depends on the modulus of continuity of the signal whereas the variance is always

o(W '2). For example, if s(t) is Lip y, 0 <yf_ 1, then the mean-square error is

o(w-min(yl/2)), and for y > 112, it is dominated by the variance and is o(W' /2).

Additional smoothness conditions on the signal s(t), such as differentiability,

would provide faster convergence rate for the bias but would not improve the rate

of convergence of the mean-square error.

Io When X is normal, the constants K, and K2 depend on the variance a2 of X

and on c (cf. (4a)). When the variance is asymptotically dominant, e.g. if the

-w signal is Lip y with 1/2 < y:5l, asymptotically optimal choices for a and e can be

6



found by minimizing K2; we find a = 2b and e b for which K2 = 4reb2 and K1 =e

(and these values are larger than those when X is uniform).

The next theorem shows that the estimates Sw(t) converge to s(t) in the

21th mean for every integer 1 -_ 1 and that faster rates of convergence are avail-

able in this case.

Theorem 2.2. Let s(t) be Lip y on I, 0 < y _ 1. Then for all t in the

interior of I and for every integer k _ I the estimates (8a) - (8b) satisfy

_,E[;sw(t)-s(t)]2 =o0(w-9,min(y,l/2))

From the practical point of view, convergence of the estimate ;w(t) to s(t)

with probability one (rather than in the mean) is preferable so that s(t) can be

reconstructed from almost every realization of the data {sgn[s(k/W)+Xkl}k , i.e.,

corresponding to almost every realization of the noise sequence {Xk}k. This strong

consistency of the estimate Sw(t), along with its rate of convergence, is given in

the next theorem.

Theorem 2.3. Let s(t) be Lip y on I, 0 < y f 1, and let a be any constant

satisfying 0 < a < (l/2)min(y,l/2).

(a) If the linear system is determined by (5) then for each fixed t E (0,-)

and each fixed sequence Wn as n +-, we have with probability one

(Wn)al Wn(t) - s(t)1 0 as n

(b) If the linear system is determined by (6), then for each fixed t E (0,I)

and with W =-n, a positive integer, we have with probability oneI.
n Jsn(t)-s(t)L 0 as n

Our final result in this section provides a central limit theorem for the

error sW(t)-s(t). When the noise X is uniform, we shall assume that it is uniform

7
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over [-c,c] with c > b, in which case the estimate (80 is replaced by

sw(t) = c A(t).

Theorem 2.4. Let s(t) be Lip y on 1, 1/2 < y:El. Define

sw(t) = Bw(t)[sw(t)-s(t)1, t E I,

where the normalizing factor Ow(t) is specified below.

(a) If I = [0,o) and the linear system is determined by (5) then the values

of the process {sw(t), 0 < t < .} at distinct instants {ti} are asymptotically inde-

pendent standard normal variables as W .

,. (b) If I = [0,1] and the linear system is determined by (6) then for each

fixed t E (0,I), Sw(t) is asymptotically standard normal variable as W -.

When X is uniform over [-cc], Bw(t) is given by

aw(t) = {c2 Var[w(t)]}I/ 2 ,

and when X is normal, by

aw(t) = 2 [s(t), a] {Var[W(t)I - /112

Upper and lower bounds on 6w(t) can be obtained from the bounds (35) on Var[nw(t)].

The asymptotic normality of Sw(t) can be used to obtain confidence intervals

for the error Sw(t)-s(t) by using the bounds on Bw(t).

We conclude this section with some practical comments on the various trans-

mitter/receiver combinations. Clearly, the simplest transmitter uses uniformly

distributed noise and the corresponding receiver is then linear. The "Bernstein"

linear receiver would be the simplest to use since it employs a finite number

(W+l) of samples to reconstruct the signal over the interval [0,1]. The actual

sampling rate W to be used can be determined from Theorem 2.1 to correspond to an

acceptable mean-square error. For signals defined over [0,-), aside from using the

"Szhsz" linear receiver, one could also use the "Bernstein" linear receiver

sequentially over consecutive intervals of unit length.



III. THE GENERAL CASE

In this section we consider general (nonconstant) nonlinearities f(x) in

the transmitter and, under appropriate conditions on f(x), we specify noise dis-

tributions, linear systems hW, and memoryless nonlinearities g(x) such that sw(t),

defined by (2) and (1), is a consistent estimate of the signal s(t) as W .

Theorems 3.1-3.4 contain Theorems 2.1-2.4 as special cases.

We first specify the distribution of the noise X, introduce appropriate

assumptions on f(x), and specify the memoryless nonlinearity g(x) in the receiver.

There are two types of symmetric distributions appropriate here, those supported

by the entire real line (- cc), and those supported by the finite interval [-b,b].

For the sake of concreteness we will concentrate on two such typical distributions,

the normal N(O,a2) with density p(x;o) and the uniform over [-b,b]. We shall use

the function p(s) defined by

u(s) = E[f(s+X)], - < s < . (10)

Clearly, p(s) depends on f and on the distribution of X. When X is N(O,a2 ), we

have

uNs) =f f(s+x) ,(x;o)dx

and when X is uniform over [-b,b] we have

l b
P =S f(s+x)dx

In the particular case when f(x) sgn x, pu(s) and pN(S) are given by (3). For

monotonic nonlinearities f(x) (which need not be strictly monotonic, e.g., the

hardlimiter), and for the case of nonlinearities f(x) described in (B2) below

(which need not be monotonic, e.g. f(x) = - x2x), it has been shown in [3]

that UN(S) is strictly monotonic, and thus its inverse PN (x) exists. We now

specify the memoryless nonlinearity g(x) in the receiver, for various classes of

transmitter-nonlinearities f(x) and noise distributions.

1.
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Assumption B. We say that (B) is satisfied if any one of (BI), (B2).

or (83) is satisfied.

(Bl): i. X is N(O,a2).

ii. f(x) E L4[(x;o)dx] and is monotonic (not necessarily strictly).

1
iii. g(x) 0 ot e w s c = b + , c > 0 .

0 , otherwise

(82): i. X is N(O,a2

ii. f(x) E L4[ (x;a)dx] is an odd function and has nonnegative Hermite

coefficients {ekIk with eI > 0. (See [3].)

iii. g(x) = UN x) for -® < x < w.

(B3): i. X is uniform over [-b,b].

ii. f(x) = sgn x.

iii. g(x) = bx, xI > 1

Our first result shows the mean-square consistency of the estimate

sw(t) under general conditions on the linear system hW = {hw(tk)}k

Theorem 3.0. Let Assumptions (A) and (B) be satisfied. For every

t E I for which

i. hw(t,k) 0, for all k,

ii. I hw(t,k) 1

k

iii. X (t- 2)hw(t,k) 0 as W -

k

iv. I h2(t,k) 0 as W - ,
k

the estimate (2) converges in quadratic mean to s(t) as W .-

The first condition on hW makes the linear system a positive linear

1' operator, the second is a summability/normalization condition, the third guarantees

1 1



that the bias of the estimate tends to zero, and the fourth condition guarantees

that the variance of the estimate goes to zero. A large class of linear systems

hW satisfying the conditions of Theorem 3.0 can be obtained as follows.

Proposition 3.0. Let {iT= be a sequence of independent identically

distributed random variables with integer values, mean t E I, and finite second

moments. Then {hn(t,k)) k defined

hn(t'k) = Pr{ 1 + "".+ En = k), n = 1,2,...,k=O,±l,... ill)

satisfies assumptions (i)-(iv) of Theorem 3.0 (with W taking positive integer values)

for every t E I for which the random variable ti is not degenerate.

Positive linear operators of the type described in Proposition 3.0 have

been considered in the approximation theory literature [5], where conditions (i)-(iii)

of Theorem 3.0 are established and used for the interpolation of continuous functions

m(t) on I by Ik m(k/n)hn (tk). We mention two examples: When each Ei takes on the

values 0 and 1 with Pr{ i = 1) = t, then hn is given by (6) and represents the

Bernstein operator. When each Ci is Poisson with parameter t, then hn is given by

(5) (with W = n) and represents the Szasz operator.

Theorem 3.0, while guaranteeing mean-square consistency of the estimate

Sw(t), provides no bounds on the rate of convergence. We shall derive such bounds

for linear systems hW corresponding to the class of generalized Szasz operators [6]

(see below) and to the Bernstein operator. While the Szasz operator (5) can be

generated as in Proposition 3.0, the class of generalized Szasz operators cannot.

We consider the entire class of generalized Sz'sz operators, rather than the single

aj - Szasz operator, because with no additional work we obtain the same rates of con-

vergence for this entire class of linear systems.

We now introduce the generalized Sz~sz operators. Let A(z) = Y;o0 anzn

be an analytic function in IzI < R, for some R > 1, and suppose that for all n

1:.l



an 2 0 and A() = I an > 0
n=O

The Appel polynomials [7) pk(U), u 0 0, are defined by their generating function

A(z)eu z Pk(u)z , (12)
k=O

i.e.,

k j

Pk(U) = j[O ak-j 3T

The generalized Szasz operator is represented by hw = (hw(tk)}k with

-Wt
hw(tk) = Pk(Wt) A(l), k = ,l,...,t 0, W > 0 (13)

The Szasz operator corresponds to A(z) 1 I for which pk(u) = uk/k!

The following assumption specifies the interval I and the linear system

hW

Assumption C. We say that (C) is satisfied if either (Cl) or (C2) is

satisfied.

(Cl): I = [0,=) and hW is a generalized Szasz operator defined by (13) and (12).

(C2): I = [0,1] and hW is the Bernstein operator defined by (6).

We shall therefore concentrate on signals s(t) defined on the positive

real line [0,.) or the unit interval [0,1]. By appropriate scaling one can simi-

larly consider signals defined on any half line or any finite interval. The case

of signals defined on the entire real line can be reduced to the positive real line

by separately considering the parts of the signal on [0,.) and (--,0].

All the following results hold under Assumptions (A), (B) and (C).

Assumption (A) states the conditions on the signal s(t), Assumption (B) determines

the nonlinearity g(x) in the receiver, and Assumption (C) determines the linear

system hW in the receiver.

Our next result provides upper bounds on the mean-square estimation error.

I :4 12
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Theorem 3.1. Under Assumptions (A), (B) and (C) we have for each t E I,

that the estimate (2) satisfies

(sw(t-s(t)]_ K W (s;w(t)) + K2 vW(t)

2 2 t r
where aw(t) and v2(t) are determined by (C),

for (Cl): 2 t All)+ A'(I) 2 = 1 + o()

for (C2): a (t) = L-1 I, v2(t) + 1 +o(1)

22 Wt(l-t)+()

and the constants K1 and K2 are determined by (B).,

for (81): KI 
= 4Q2(q 2 + (b/A)2), K2 

= U2(q 2 + (b/A)2

2 U 2  +(b))

for (B2): K1 = 4Q
2/q2  , K2 = U2/q

2

for (B3): K1 = 4b2Q2  , K2 = b2U2

and the constants q, Q, U2 and A are defined in (17).

It follows that iw(t) converges to s(t) in quadratic mean for every t

in the interior of the interval I, i.e., for t > 0 under (Cl) and 0 < t < I under

(C2). Also, for the entire class of generalized Szisz operators, the rate of

decay of a2(t) and vt2 M as W - is the same, o(1/W) and o(1/W), respectively,

and thus the rate of convergence of the bound on the mean-square error is also the

same. This rate is also identical to that of the Bernstein'operator. For example,

when s(t) E Lip y, 0 < y ! 1, the mean-square error is o(w'min(y'1/ 2 for all

o choices of linear and nonlinear systems hW and g(x), covered by Theorem 3.1.

Bounds on the higher order moments of the estimation error can be ob-

tained in a similar manner and they provide faster rates of convergence.

13



Theorem 3.2. Assume that s(t) is Lipy on I, 0 < Y 5 1, and that

Assumptions (A), (B) and (C) are satisfied. Let Z be a positive integer and under

(B1) or 02) assume, in addition, that f(x) E L2,[#(x;o)dx ]. Then for every t in

the interior of 1, the estimate (2) converges in the 2zth mean to s(t) as W -

and for some continuous function K ,y(t),

K ,y(t)

E[Sw(t)-s(t) 2 ~ ~w~~tmin(y,i/2) [1 + o()].

The exact expression for K, (t) is quite involved but easily expressed

in terms of F ,y(t), introduced in the proof of Theorem 4.2, and the constants in

Proposition 5.1. The bound of Theorem 3.2 can be used to obtain the strong con-

sistency of the estimate sw(t) and the rate of almost sure convergence.

Theorem 3.3. Assume that s(t) is Lip y on I, 0 < y < 1, that Assump-

tions (A), (B) and (C) are satisfied, and in the case of (Bl) or (B2) that

f(x) E L21[¢(x;a)dx] for some positive integer z satisfying X 1 + Y- for

0 < Y <1/2, and 23 for 1/2 - Y f 1. Then with a any constant satisfying

0 < a < (l/2)(min(Y,I/2) - 1/Z), we have

(a) under (Cl): For each fixed t > 0 and each fixed sequence of sampling

rates Wn as n + , we have with probability one

(WN)' sup 1SW (t)-s(t)I 0 as N
n N n

(b) under (C2): For each fixed 0 < t < 1 and with W = n, a positive integer,

we have with probability one

W sup In (t)-s(t) -' 0 as N-

As an example, when f(x) is bounded and monotonic (e.g. hardlimiter,

|o -quantizer) we have a < (I/2)min(y,l/2)(as I may be taken arbitrarily large); and

thus for Lip 1 signals we have, in particular,

14



(Wn) i Wn(t)-s(t)I -0 as n
n

with probability one for all < 1/4.

We finally show that, under certain conditions, the estimate iw(t) is

asymptotically normal and asymptotically independent at distinct times.

Theorem 3.4. Assume that s(t) is Lip y, 1/2 < y E 1, and that Assump-

tions (A), (8) and (C) are satisfied. In addition, assume that under (51) or (B2)

we have f(x) E L p[(x;o)dx] for all p t 1, and under (B3) that the noise X is

uniform over [-c,c] with c > b. For t E I define

sw(t) B sw(t)w(t) - s(t)

where BW(t) = '[s(t)] Var 1/21mw t)]

(a) For each fixed t in the interior of I, W(t) is asymptotically standard
normal as W - -. Bounds on the normalization factor ow(t) can be obtained from (35).

(b) For the Szasz operator in (Cl) (A(z) 1 1) we have, in addition, that the

values of the process {sw(t), t > 01 at distinct t's are asymptotically independent

as W -

Some couents on Theorem 3.4. First, the theorem remains true if the

statement "s(t) is Lip y, 1/2 < y - 1" is replaced by "w(s;6) = o(6 1 / 2 ) as 5.0" m

(cf. the proof of Theorem 4.4). Second, part (b) of Theorem 3.4 remains true if

the Szasz operator is replaced by a generalized Szisz operator for which A(z) is a

polynomial (cf. the proof of Proposition 4.1(b)). The question of asymptotic inde-

pendence in the Bernstein case (C2) is open at present. Finally, the normalizing

factor Bw(t) will take a simple form if the exact rate of convergence of Var[W(t)]

can be established. Specifically, we have obtained in Theorem 4.4 upper and lower

.* bounds on Var[mw(t)] of the form

0 < Al(t)/11J5 VaroWm](t)] A2(t)/W

15



for some specified functions At(t), i - 1,2. When s(t) is a constant, we find

AI(t) = A2(t) in which case the rate of convergence of Var[AW(t)) is exactly 1//T.

If it can be established that this rate is valid for all signals s(t) satisfying

Assumption (A), we would then obtain

A(t) = lim W1/2 Varfmw(t))

and the central limit theorem for w(t) could be stated in the more standard form:

W 1/4 [;w(-s(t)] is asymptotically normal with mean zero and variance

2A(t)/( j'[s(t)]}

A final comment in this section. For signals s(t) defined on [0,-) we

always assumed uniform continuity of s(t) over [0,-) and obtained results valid

on (0,-) (uniformly on finite subintervals). For signals defined on [0,-) that

are continuous but not uniformly continuous, using the results of [8], we obtain

results similar to those of Sections II and III valid over finite subintervals of

(0,-) (and expressed in terms of the modulus of continuity of s(t) over each such

subinterval). These results are of obvious interest but are not stated here

explicitly to avoid overburdening the text.

IV. CONVERGENCE PROPERTIES OF THE ESTIMATE mw(t)

Let

m(t) = E[f(s(t) + X)] = p(s(t)), t e I

be the mean function of the output of the nonlinearity f(x), where u(s) is defined

in (10). We establish the mean-square consistency, strong consistency, and a

central limit theorem for rI(t), given in (1), as an estimate of m(t). These

results, which are of independent value, are given in Part (b). In Part (a) we

* collect certain properties of the function p(s). In order not to overburden the

16
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text, the proofs of all the propositions are delegated to an Appendix.

(a) Properties of the Moment Function P(s)

For each k = 1,2,... define uk(s) by

Uk(S) = E[fk(s+X)], -- < s < - . (14)

When X is N(O,a 2), Pk(s), denoted by PN,k(S), is well defined whenever

f(x) E L2k[¢(x;o)dx] as follows by the inequality

IPN,k(S)l n es 2/2a {E[f 2k(x)}l/ 2  (15)

shown in [3]. The following properties of PN,l(s), denoted simply by N(s)' were

shown in [3]. UN(s) is infinitely differentiable. If f(x) E L2[¢(x;o)dx] is

monotonic (not necessarily strictly monotonic) then UN(S) is strictly monotonic and

P (s) > 0 for all s .

If f(x) E L2[f(x;a)dx] is odd and has nonnegative Hermite coefficients {ek 1k=O

then PN(S) is strictly monotonic with UN(s) eI for all s and if, moreover,

e > 0 then

P (s) t e, > 0 for all s

We shall need (and use) strictly positive lower bounds on luN(s)I. Note that it

is possible to have uN(s) - 0 as Isl - (e.g., if If(x)j ! M and

lim x ..±f(x) = ±M) and in such cases s would have to be limited to a bounded set

of values.

When X is uniform over [-b,b] and f(x) = sgn x, then uU,k(s) is clearly

well defined for all s and all k and uU,l(s), which is denoted by us), is given

by (3b). Also

u(S)= > 0 for 1sl!:b
U~S b

In proving a central limit theorem for mw(t) and Sw(t) we shall need the

following property:

17
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min ar[f(s+X)] > 0. (16)
ist 5 b

When X is N(O,0 2 ), Var[f(s+X)J - ,v ( )12 (s) which is a continuous functionWhe X s NO~o).Varf~sX)]- N,2(s) -NI

of s. Thus, to show (16), it suffices to show that Var[f(s+X)] j 0 for all

-- < s < - . Indeed, if for some s, Var[f(s+X)] a 0, then f(s+x) - Const for almost

all x with respect to the normal density *(x;o) and thus f(y) a Const for almost all

y, which contradicts our hypothesis that f(x) is not a constant function. When X

is uniform over [-cc] with c > b, and f(x) = sgn x, then (16) follows from

Ifin Var~sgn(s+X)] = 1 - max - 1 - > 0

IsJ :r- b 1st I- b

Finally we shall use the following finite and nonzero constants whose

existence under Asswmption (B1) or (82) follows from the above discussion and

under (B3) is evident.

min 1(s) , under (B1)
is( -<c

qin u (s) = e1  , under (B2) (17a)q a I <".

min Vj(s) , under (B3)
Isl 5 b

Q = max P(s) , under (B) (17b)

max Var[f(s+X)] , under (B) (17c)I ! b
V min Var[f(s+X)) , under (B) (17d)

min{u(c) - u(b), P(-b) - P(-c)) , under (BI) (17e)

.. -? q(c-b).

Note that V2 = 0 under (B3) but V2 > 0 under the modified (B3) where X is uniform

over [-c,c) with c > b. V2 is used only under modified (83) when needed.

1
13
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(b) Convergence Properties of Iiw(t)

We begin by considering the mean-square error for a fixed t E I

E[mW(t)-m(t))2 = mias2[Ew(t)] + Var[mw(t)]

We have

row(t) " Z ZW k hw(tk) (18)
k

with ZWk = f(s(k/W) + Xk). Since the Z's are independent we have for all k,

EEZ 2 sup E[f(s+X)] 2 < 
z , k] is1  5 b

by Assumptions (A) and (B) (cf. (15)). Thus the series (18) converges in quad-

ratic mean, as well as with probability one, provided hkh (t,k) < -. Then, since

E[ZW.k] = u(s(k/W)) = m(k/W), we have

E[mw(t)] = Z m(k/W)hw(tk) Pw(Mt)
k

If hw(tk) f 0 for all k, then PW is a positive linear operator and by a well-

known result in approximation theory (see, for instance, Devore [9, pp. 28-293),

if 1k hw(t~k) = 1 and m(t) is uniformly continuous on I, then

IBias[mw(t)]l = IPw(mt)-m(t)f s 2w(m;oW(t)) . (19)

where w(m;6) is the modulus of continuity of m(t) over I and

2 ( 2 -  
- t)2 hW(tk) .(20)

Also, using (17c), we have

Var(mw(t)] = VarEZW, k] h (t,k)nU2VW(t) (21)
~k

I. where
VW(t) hW(t,k) (22)

k

Hence for each t E I for which hw(t,k) 0 for all k, khw(t,k) = 1, and

h,(tk) < -, we have

19
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E[A w(t)-m(t)] - 4w2(m;wt) v2(t) (23)

2 W 2 Ma~) 2v

Thus if 2o(t) - 0 and vw2(t) 0 as W - it follows that mw(t) converges in quad-

ratic mean to m(t) as W -. This simple result is stated below.

Theorem 4.0. Under Assumptions (A) and (B), and for every t E I for

which hW satisfies conditions (i)-(iv) of Theorem 3.0, we have that mw(t) converges

in quadratic mean to m(t) as W -.

The following proposition, whose proof is given in the Appendix, is used

in determining bounds on the rate of convergence of Aw(t).

Proposition 4.1. (a) Let T(X) be a 21-periodic function continuously

differentiable on [-w,n] with Fourier series T(A) = .k exp(ikX). Then for

= 2,3,... ,

k=-oo (27r) '  - 7 "'- i\]l X j=l

(b) For the generalized Szasz operator (13) we have for t, tl, t2 > 0

= exp(-W(tl+t2) )  ® F/tl \k/2 /t2k/2"

(i) Z hw(tl,k)hw(t 2
,k) = 2(I kbk k=O A k-O tJ Ik (2W 1 t2

where e0 = 1, Ck = 2 for k >_ 1, bk = lj=O ak+jaJ9 k >_ 0 and Ik(x) is the modified

Bessel function of the first kind of order k.

(ii)2 2 1+ o1
(ii) vw(t) = k hw(t,k) = o(1)

=k=0 2 /-7r -

re"2Wt I(2Wt) 5 v2(t):- e-2Wt io(2Wt)

where r = A'2(MI= a2

'K=O ak

- (ill) [hw(tk)]2  (e-Wt Io(Wt) )Il (I +(1)(t)/2 , 1 3
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(c) For the Bernstein operator (6) we have for 0 < t < 1,

2 W 2 lo(l)
(i) v (t) hw2 (tk) = l + ._

k=O 2 !iWt(l-t)

W 1 + o(I (i-I)/2(ii) I [hw(t,k)]9 - 3

k=O \7~~-~

Theorem 4.1. Under Assumptions (A), (B) and (C) we have for each t E I,

2 ~ 2 2
E[mw(t)-m(t)]- (m;W(t)) + U2 v W(t)

where the constant U2 is given by (17c) and mw(t) and vw(t) are as in Theorem 3.1.

Proof. The general bound on the mean-square error is given by (23). We

2
only need to show that m(t) is uniformly continuous on I and to compute aw(t) and

2v(t) under (Cl) and (C2). Since m(t) = p(s(t)) and V(s) is continuously differ-

entiable with bounded derivative over the range of s(t) (cf. 17(b)), the uniform

continuity of m(t) follows from that of s(t). In fact it is easily seen that

'(m;6) - QUs;o) (25)

where the constant Q is finite by (17b). Next we compute 2 (t) and v2(2

(Cl) and (C2). For the generalized Szisz operators, (Cl), we have by (20) and (13)

2(t) = e I (k-Wt)2 Pk(Wt) =I+ AW(11 + A(L)
W(t)= A(1)W 2 k=O W2A(1)

where the last step follows by the expression for the series given in [6]. The

2expression for vw(t) under (Cl) follows by Proposition 4.1(b.ii). For the Bernstein

operator, (C2), 2(t) is equal to the variance t(l-t)/W of the binomial distribution

2Io (W,t) and vW(t) is given by Proposition 4.1(c). 0

thNext we consider the convergence of mw(t) in the 2t mean. The follow-

ing proposition on the cumulants of mw(t) is needed and its proof is given in the

Appendix.
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Proposition 4.2. Let Assumptions (A), (B), and (C) be satisfied. Let

r be a positive integer and under (Bl) or (B2) assume, in addition, that

f(x) E L2r[(X;a)dx] . Then for every choice of points {tl,...,t r l in 1, the joint

cumulant of mw(t) of order r satisfies

r
(a) )Cumr{ (tI) ...,I(tr)}I -Mr Z TI hw(ti,k)

k i=l

for some finite positive constant Mr

M r[1l + o(I)]
(b) ~ Iurmw(t1 ),... mw(tr ) }:<

,, ~ ~~~~~(2w)rl2 TiIr D(ti)(-)2

where

t , under (Cl)
D(t) = It(l-t) , under (C2) (26)

Theorem 4.2. Under the Assumptions of Theorem 3.2 we have

2z F9 (t)
ErrnW(t)-m(t)] wimin(y,i/2) (0 + o())

for some continuous function F ,,(t) specified in the proof.

Proof. For notational convenience we write m, m for ,mt), m(t),

respectively. Since m-m = Bias[m] + (m-E[m]), we have

E~nm2k (Bias[]) 2 z~ 2Z (2z"(BiasE[iI) 2t3Er-1r] 3 (7
j=2 J

Since an estimate for Bias[m] has already been obtained in (19), we seek an esti-
wA

mate for E[m-E[m]Ij . We recall that with n &= m-Elm]
I. r p

E[n r  Cum {n,...,n}, r i 2 (28)p=l i=l v

.*h where the inner sum extends over all partitions (v,... ,V ) of the set {l,...,r}

1-
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satisfying v1 + . + v r [10]. Now any partition (V1 .... ,V with p > [r/2]
p p

(the integer part of r/2), will necessarily have a factor Cuml{n} = E[rj - 0 in

the product of cumulants in (28). Thus the range of p in (28) is reduced to

p = l,...,[r/2]. Next we note that Cumv{n,...,n} = Cumv{m,...,m} for v _2 and by

Proposition 4.2(b) we have

M[I + o(I)] v 2lCum {n, .... nil< M E + 0) 2
{2iW D(t)}(v-1)1 2

Thus for each p-l,...,[r/2] we have

p 1 + o(III Cum n... H (29)iil i - HP {27rWD(t) r-p /2 '

with H _ Lp.l M]i. (29) implies that the dominant term in (28) as W-o corre-

sponds to p [r/2] so that for r > 2

iE(mE[r])ri [] + o()3<EmEm] : H [r/2 ] {27rWD(t) j(rLr/2])/2, r i_ 2 (30)

Since s(t) is Lip Y, 0 < Y < 1, i.e., w(s;S) < L 6', then by (25) m(t) is also
5

Lip Y with

w(m;6) < Lm6Y; Lm = LsQ

2
Thus from (19) and a2(t) = (D(t)/W)[1 + o(1)](cf. expressions in Theorem 3.1) we

have

Bias[m]js- 2L m(D(t)/w)Y/
2[l + o(I)] . (31)

It then follows by (30) and (31) that (27) can be bounded by

E[m-m] 2 (2L M) (D(t)/W)y' [I + o(l)]

.22 {D(t) ( )H
+ [1+ o()] 1 (2Z)(2L) 2 ' (32)

j=2 jm {2iD(t) }(j-[j/2)/2 " - 2

where

0. = (Y- , j =
3 2 -
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We now seek the dominant term in the above bound as W + =. This depends on the

value of y.

(a) For 1/2 < y E 1, the dominant term in (32) corresponds to j = 2z for

which 62, = k12 and thus

[ ]2X Hjl + o()]{27rD(t) } 1 2Wx/2

(b) For 0 < y < 1/2, the sum Z2 is o(W-yt ) so that

Elm-m]29.  (2Lm)2z {D(t) 9 o(I)

E[M -m W yZ 1+0)

(c) For Y = 1/2, the terms in (32) corresponding to j odd are o(W- '2) and

are negligible relative to the remaining terms. Thus

9 (2 2 (2L) 2 .
Emm2Z {D(t ;/2 2 1 2)(2m)2-

E[rn-m][I 2 X j)7 j/2 1 + o(l)]Wj= eve {21TD(t)}J/2 H 2

j even

These results can be combined for all 0 < Y 5 1 in the form given in the theorem

where F9 ,y(t) can easily be identified from the above analysis. 0

We next obtain the strong consistency of mw(t). The result is identical

to Theorem 3.3 but with mw(t)-m(t) replacing Sw(t)-s(t).

Theorem 4.3. Under the Assumptions of Theorem 3.3, mw(t)-m(t) satisfies

its conclusion.

Proof. Fix t in the interior of I and consider the estimate mw(t) as a

function of W: Define a process {nu , u 01 by

, jm(t) , u :0jtu  (33)

I. (i/u(t) , u > 0

24
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.. . . . . .... .. . . .. - -I . ...- -. . . -. ...

(a) Under (C), {n u , u 0} is not necessarily separable. Fix a sequence

{Wn}- with W +- and let {r ,u 01 be a separable version of {nu, u 0} with

a separating set which includes the points u0 = 0 and un = l/Wn , n : 1. Then for

any 6 >0 we have

sup In -ne l  sup - ;OI . (34)
Un E 6  n u56

Now, since the two processes {n u , u > 0) and {nu , u 2 01 have the same finite

dimensional distributions, it follows by Theorem 4.2 that

EIu - , {K t[l + ol)} u +I1

where 8=i min(y,l/2)-l. It then follows by Kolmogorov's theorem (see Neveu [11,

p. 97]) that with probability one

Lsup Inu- o K) °  as 6+0
6 u56

for any 0 < = < 8/2z. Hence by (33) and (34) we have, with probability one,
1 sup jm~n(t)-m(t) , 0 as 6 + 0
6G 1/W n -s

and the result follows by choosing 6 = I/WN.

(b) Under (C2), W = n (an integer) so that {nu , u ? 01 is separable.

Theorem 4.2 and Kolmogorov's theorem imply that, with probability one,

1 sup 'nl/n - nol 0 as 6 + 0
6 l/n E6

and the result follows by choosing 6 = 1/N. 0

We finally derive a central limit theorem for the estimate m(t).

Define the normalized error process

, ~wmt-mmt
•h~) Vr 1 m t E I
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Theorem 4.4. Under the assumptions of Theorem 3.4 we have

(a) For each fixed t in the interior of I, A(t) is asymptotically standard

normal variable as W [(tThe normalizing factor Var)J/2[ t satisfy

{2,r (t)/U2}1/ 2 W1/4[1 + o(1)] 5 Var 1 / 2[mw(t)

!5 {2iTrD(t)/V 2 }11/ 2 W1/4[1 + o(1)] (35)

where the constants U2 and V2 are given in (17) and D(t) is given by (26).

(b) For the Szasz operator in (Cl) (A(z) S 1), we have in addition, that the

values of the process {mw(t), t > 01 at distinct t's are asymptotically independent

as W .

Proof. Putting

M (t) - E[r(t)]
w Var 1 /2 [w(t)]

we have that

t M EW(t) +- Bias[mw(t)]

Var 1 / 2 [Imw(t)]

The proof is accomplished by showing that as W the second term goes to zero

and tw(t) has the asymptotic properties stated in the theorem.

Under (Bl), (B2) and the modified (B3), we have by (17c) - (17d)

0 < V2 _i Var[ZWk] 5 U2 < , (36)

and thus by (21),

V2 v2(t) Var[m(t)) _ U2 VM(t) (37)

2(with equality when s(t) is constant). Using the asymptotic expression for vwit)

given in Proposition 4.1(b)(c) we have
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V [ + )] Var[(t)] U2  + () (38)

240(t)W 24D(t)W

Hence by (31) and (38), since y > 1/2

V~iar1"2Cmw) -=o(W" I / 2 ( y - I / 2 )) + 0var 1/ 2 [1;W( t )]

We now establish the desired asymptotic results for w(t) for t in the

interior of I. It is clear that

E[&(t)] = 0, Var[tw(t)] = 1

For Part (a) we show that for each fixed t, all cumulants of tw(t) of order r -3

* tend to zero as W -i; the asymptotic normality of &w(t) follows then from

Lemma P4.5 of [12]. For Part (b) we show that for all r >_ 3 and all instants

ti,...,t r > 0, not necessarily distinct, the joint cumulant

Cumr("W(tl),...,"CW(tr) 0 as W - , (39)

and in addition

E[Cw(tl),W(t2)] 0 as W for tI # t2  (40)

It will then follow by the same Lemma of [12] that all finite dimensional distribu-

tions of the process f{w(t), t > 01 converge to the finite dimensional distributions

of a Gaussian process with mean zero and covariance R(t1 ,t2) 1 1 for tI = t2, and

R(t1,t2) 0 for tI # t2, i.e., with independent values at distinct points. Both

goals will be achieved if we show (39) in general, and (40) in the Szasz case,

which we now proceed to do. For r > 3 and {ti} in the interior of I, we have

Cu,&~l~..t~ Cun r { W
( tI ),... ,iW(t r}SCWUr{(W(tl)""'(~W(tr) }  l2

I"lIn Varll2[;(ti)]

and using the upper bound in Proposition 4.2(b) for the numerator and the lower

bound in (38) for each factor in the denominator, we obtain
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ICumr{&(tl) .-. ,W(tr)1 = O(W-(r- 2 )/ 4) ,..0

since r _ 3. Next we prove (40) for the special case of the Szisz operator in (Cl).

Note that by Proposition 4.1(b), specialized for the Szisz case, we have

Go -W(t 1+t 2 )

k=0 hW (tl k hW (t2 k)  e IO(2WXi72 ) . (41)

Now

Cov{nw(tl)'mw(t) } = Var[ZW'k~hW(tlk)hW(t 2 'k)
k=0

and by (36) and (41)

W( t I +t 2 )

Covw(tl),mt} V e Io(2WICt')

By (37) and (41) we have Var[mw(t)] >_ V2 e- 10(2Wt), so that

U2  10(2Wt 1 t2)

E[W )W(t2))] V2 {I0 (2Wt I)10 (2Wt2) }
11 2

Using the asymptotic expansion [13, p. 86] for large x, 1o(x) (2rx) e/2eX(l+o(I/x)),

we obtain for t t2 as W + 2

22JE[&w(tl) At)l <_ L2e- 1[l + 0() M3 0

Finally, the bounds on VarI 2[w(t)] follow from (37) and Proposition 4.1. 0

V. PROOFS OF THEOREMS OF SECTIONS II AND III

Using the convergence results for mw(t), proven in Section IV(b), and the

relationships Sw(t) - gbmw(t)). m(t) = ps(t)], we now establish the convergence

results for Sw(t) stated in Sections II and Il. The basic link between the prop-

erties of iw(t) and iw(t) is provided by the following proposition whose proof is

given in the Appendix.

28



Proposition 5.1. Let Assumptions (A) and (C) be satisfied. Then

(a) under (Bi), with p t 1, we have

Ej w(t)-s(t)Ip 4 [(I/q)p + (b/&)p] EJWm(t)-mt)lP

(b) under (B2) we have

(c) under (B3) we have

sw(t)-s(t) = b[mw(t)-m(t)]

where the constants q and A are defined in (17) and b is the upper bound for s(t).

Theorems 3.0-3.2 follow immediately from Theorems 4.0-4.2, respectively,

and Proposition 5.1. Theorem 3.3 follows from Theorem 3.2 and Kolmogorov's

theorem [11, p. 97] in the manner of the proof of Theorem 4.3. The deduction of

Theorem 3.4 from Theorem 4.4 is given below. Finally, Theorems 2.1-2.4 follow

immediately from Theorems 3.1-3.4, respectively. (In Theorem 2.1, for the esti-

mate (8a) under (Bl), the values of the constants K1, K2 are obtained from those

of Theorem 3.1 by using the computed values q = 2€1b+,a), Q = /172'/c, U2 = 1, and

the inequality A - q(c-b); the use of this inequality results in a simple expres-

sion for K1 and K2.)

Proof of Theorem 3.4. (a) Fix t in the interior of the interval I. By

Theorem 4.4(a), the distribution of [mW(t)-m(t)]/Varl/2 [m.w(t)] converges to the

distribution of a standard normal variable, say t" A result of Mann and Wald

(14, p. 226) shows that if g(x) has a continuous first derivative in the neighbor-

hood of m(t), and g'(m(t)) 0 0, then the distribution of {g[m(t)] - g[m(t)])/

tI. Var/[miiWI(t) converges to the distribution of the normal variable

g (m(t)) t. Since Is(t)I ! b, m(t) = u(s(t)) takes values in the interval

[P(-b),u(b)] for all t 1 I. Thus under (81), (B2) or the modified (83) stated in

the theorem, g(x) is continuously differentiable over an interval containing

i[Y(-b),P(b)J and g'(x) > 0 for P(-b) c x !s P(b). It follows that the distribution of
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w(t)-s(t) gN -)J g[m(t)]Cw(t) varl12 (t)] varl/2 (t)]

converges to the distribution of the normal variable g'(m(t))Ct and the result

follows from g,(m(t)) = I/v'[s(t)]

(b) Let {ti k. be distinct points in (0,.). By Theorem 4.4(b), the dis-

ktribution of {mw(ti)}il converges to the distribution of independent standard
k

normal variables, say {(i1i=1 , as W - -. Again by the result of Mann and Wald [14,

p. 226), the distribution of .I eisw(t i) converges to the distribution of

the normal variable 6 ig'[m(ti)]Ci whose mean is zero and variance is

,=i O{g'[m(ti)]}. Since the eis are arbitrary, it follows that the variables

{Sw(ti)}=l are asymptotically independent normal. o

APPENDIX

A. Proof of Proposition 3.0. It is clear by (11) that h n(t,k) - 0 for all k and

khn( t,k) 1 . Also, that Cn = tl + "'" + &n has mean nt and variance n Var[i.

Hence
00 - t) 2 hn(t,k) =- Var[ n] = l Var[ti] 0 as n -- n n n

Thus conditions (i)-(iii) of Theorem 3.0 are satisfied for all t E I. For (iv)

we have

h- n(t,k) = lim 1 fT 0Mid
n T 2(t= T T 2

= lim n dT/ 2n
T 2T -T/n

where 0 0n), *0(0) is the characteristic function of n I Ei respectively. Since
I4n &n

&i is integer valued, , W is periodic with period 27. Consider all t E I for

which & i is a nondegenerate random variable. Then f(A) has a positive funda-

mental period which, without loss of generality, can be taken as 27. Then
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h (t,k) 2 f (Al) 2 "d

and (iv) follows by dominated convergence since < for 0 < IxI < w. 0

B. Proof of Proposition 4.1. (a) We have k= (l/2w)f(X)exp(-ikx)dX and thus*k - 1 / w 7 - ik Xj

z i.. rRI[( d-%= f f = dul
= 1 - j'" fy(. I= Jl (lx)dAj]

(t) - -7r

ikx
where TN(') Ijki 5N •ke Since (X) is continuously differentiable,

N(X) - A(A) uniformly on [-n,r] and, in fact, max,._ ir. c) - VN(Xfl_ Const N"1/2
(see [15, p. 31]). The result follows by applying the dominated convergence

theorem.

(b) By choosing T t(A) = exp[Wt(eix-l)] A(eix)Al(1), we obtain from the gen-

erating function A(z) of the Appel polynomials (12) that * k(t) F hw(tk). Hence

by Parseval's relationship
! ,

e- ~t +t2) f exp[W(t e ix+t e-i )Ae Xj
A2(l) 2

But the Fourier series A(eix) = JkO ake ikx converges boundedly and uniformly on

[-,Iw], since A(z) is analytic in IzI <R for some R > 1, so that by interchanging

summation and integration (as in Part (a)) the expression in braces becomes
aa - eW (t 1+t 2)cOsx i[(J-L)X+W(tl-t2)sinx]

a fee dX
,J ,1.0 2r- 7

= {O aja (tl/t 2)(L'J)/ 2 1j (2W tlt2)
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by [16, p.488]. Noting that In (x) I-n (x), and considering the sum for j >

and j < 1, we obtain Part (b.i). For (b.ii) we have from (b.i) with t1 -t2=t that

K h.(t,k) e2 Wt E k (2Wt) (Al)

0 A2(1) k=O

> A2 1)Co 01 (Wt -r e-2 t 1 0(2wt)

On the other hand, since IVt (i -exp(-Wt)exp(Wt cosx) we have

i h 2(t,k) = f Ivt()I 2 dx -s e lo2W (2Wt)

k=O W 21

which completes the proof for the upper and lower bounds in (b.ii). In order to

obtain the asymptotic result in (b.ii) we note that [13, p. 86] as x - -

In(x) = e 1 + (4n2 _1) (A2)

where the term o(I/x) is uniform in n. Hence as W * we have by (Al)

'h(tk)= 1 b [+ (4k 2 _l) 2Wt)
k=0 (1)4Wt Ik 0

- 1 l + A-2 (1) 0 Q t (4k 2-1) Ekbk2W k-o
44 Wt Ik=O

since ZkOekbk= [27= aj] 2 = A2(1). The asymptotic result will follow by showing

k=o(4k2 -1)ckbk < ". Since A(z) = n-o anzn is analytic in IzI < R for some R > 1,

there exists a constant 0 < r < I such that an f
5 Const rn. This implies that

bn a= an+kak - Const rn. Thus r-0 k2bk < - and the result follows. For Part

(b.iii) we have by Part (a) with i ?t 3

k=O [hiv(tik)]) <  maxiIFl t(X) [ ivt(A)l dX -k=-O X I Ir

and the result follows by using the bound IVt(A)I !E exp(-Wt)exp(Wt cosi) and (A2):
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- 0,wP - -

[hw(t,k)J] [e-Wt = l ol)

(c) By choosing t = (t eix + 1-t)W , which is the characteristic function

of the binomial distribution, we have * k(t) = hw(t,k) where hw(t,k) is given in (6).

Part (c.i), (c.ii) follow in the manner of (b.ii), (b.iii), respectively, using the

property

2 f [1-a sin2X/2]Wdx = 1 +o(l)

-iJ~ 2tr W _

for 0 < a < 1, shown in [4]. o

C. Proof of Proposition 4.2. (a) From (18) we have

rCum((tl),...,imw(tr)} = -.. Cum .{Z} . I hw(ti,k i )
k1  kr 'r il

r
mCUmr{ZWk,...,Zw ,k )n hlW(tik) (A3)

k i=l

where the first equality is justified below and the second equality follows from

the independence of {Zwk k and the fact that the joint cumulant of independent

sets of random variables is zero [12, p. 19). Part (a) will follow from (A3) pro-

vided ICumr{Z W,... ,Zw,k}I < Mr for some finite positive constant Mr - which is

seen as follows:

c Z(-l)P(p-l)! R (A4)r{Wk'"" 'ZWk p=l I=I

where the inner sum extends over all partitions (vl,...,v p) of the set fl,...,r}

satisfying vI + ... + vp = r [12, p. 19). By Assumption (A), for all k

I. EIZWkIV - sup Elf(s+X)lv = Constv - , v = 1,...,r (AS)

IsLb

where the last step follows from (15) and f(x) E L2r[o(x;o)dx] under (51) and (82)

(under (B3) this is obvious). Putting (A5) in (A4) gives the required bound Mr

3.
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The first equality in (A3) is justified as follows. Since cumulants and moments

can be expressed in terms of each other (cf. (A4) and (28)), it suffices to justify

the exchange of expectation and summation for moments. This will follow by Fubini's

theorem provided

r
" E TI Zg k hw(ti.k.)l (A6)

k k I i=l I i

is finite. But by the multi-dimensional version of Hdlder's inequality, (A6) is

bounded by

)lrl/r iIr h(t )]l/r.. H {EIZ h ,tikir i/r [I Er h (iski
kI ir I=I 'ihw ti k IEZw,k i

r~ i

The latter is finite since EIZW,k Ir < - by (A5) and Xk[hW(t,k)]r < by
Proposition 4.1(b)(c).

(b) By the rth dimensional version of Hblder's inequality for sums we have

r r I/r

1 hWtjk i. TI 1 [hW(ti.k)Jr
k k= i=l

and the result follows by Proposition 4.1(b)(c). C0

D. Proof of Proposition 5.1

We provide the proofs in reverse order.

(c) Under (B3) we have m(t) = (I/b)s(t) since Is(t)I J b. Also

mW(t) = sgn[s(k/W) + Xk]hW(t,k)
k

satisfies Imw(t)l khw(t,k) - 1. Hence g(x), given under (B3), is used only for

Ixi ! 1 and thus iw(t) - b Iw(t).

I. (b) Under (B2), Pl (x) exists for all x, s(t) v- 0[m(t) and M(t)

The result follows from the inequality

(x) - I x = qJx-yJ

Isl <-
A which is valid for all -- < x,y < =
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1 -l
(a) Under (Bl) V- I(x) exists for all x and s(t) 1 [m(t)]. For simplicity

we omit W and t in the following. We have by (Bl)

lu" 1 (;) - P-l (m)j, if V (-c) m s P(c)

IsI otherwise.

Also for p(-c) s x,y p(c),

(x) < X-YI Ix-y j
-lx) -lm in s = qlx-Yj

IsI < c

and thus

Ejs-sj P  (I/q)p Ejm-mjp + IsIp Pr{m [I(-c),P(c)]l

Now

Pr{m I [ .(-c),p(c)]} = 1 - Pr{p(-c) S (c)}

= I-Pr{p(-c)-m S im:-m V(c)

< l-Pr{ lm-ml f A} = Pr{I -ml > Al

<(I/A)PEp ~m p

where the first inequality above follows from (17e) since m(t) = [s(t)] ,

u(-b) Sm !E p(b) ==* (c)-m P I(c)-4(b) ? 0 and u(-c)-m f P(-c)-P(-b) :SO. The

result follows. [
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Figure 1. The structure of the transmitter/receiver model.
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